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Green’s functions and first passage time distributions for dynamic instability of microtubules

D. J. Bicout*
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Hea

Building 5, Room 136, Bethesda, Maryland 20892
~Received 12 June 1997!

It is shown that the dynamic instability process describing the self-assembly and/or disassembly of micro-
tubules is a continuous version of a variant of persistent random walks described by thegeneralizedtelegra-
pher’s equation. That is to say, a microtubule is likely to undergo stochastic traveling waves in which catas-
trophe and rescue events cannot propagate faster thanv2 and v1 , respectively. For this stochastic process,
analytic expressions for Green’s functions of position and velocity of a microtubule and exact solutions for the
first passage time distributions of a microtubule to the nucleating site are obtained. It is shown that, in the
v→` limit, wherev21 is the persistence time, the dynamic instability process can be described by a diffusion
process in the presence of a drift term that, in fact, is the steady-state velocity of the microtubule. As a result,
the catastrophe time distribution~i.e., the distribution of microtubule lifetimes to the nucleating site! exhibits
a power law with an exponential cutoff asF(tux0);t23/2e2t/tc, wheretc is the time scale at which the drift
term and the diffusive term are comparable.@S1063-651X~97!06812-8#

PACS number~s!: 02.50.Ey, 05.40.1j, 87.10.1e, 64.60.Lx
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I. INTRODUCTION

Microtubules ~MTs! are polarized long protein fiber
made of asymmetric tubulin dimers (ab) that involve sev-
eral forms of cellular activities, for example, cell divisio
transport network, and determination of cellular shap
Nucleated MTs~e.g., as nucleated from the centrosome d
ing the mitosis! are tightly attached to the nucleated site
their minus ends and MTs exchange tubulin dimers betw
the soluble and polymer pools at their free plus ends us
the dynamic instability mechanism. For instance, within
cell, the MT meshwork can be rapidly remodeled into tota
new configurations as a consequence of guanosine trip
phate~GTP! hydrolysis and turnover rates afforded by d
namic instability. The term ‘‘dynamic instability’’ was intro
duced by Mitchison and Kirschner@1# to describe and
provide an explanation of the self-assembly and/or disass
bly process of MTs. The dynamic instability is defined by
adsorption of free GTP tubulins@which are later converted
into guanosine diphosphate~GDP!# in the growing phase tha
increases the MT length and a loss of GDP tubulins in
shrinking phase that shorten the MT, with infrequent rand
switches between these two states. The result is that
growing MT will persist in the growing phase, but once
undergoes a change to a shrinking state, it will continue
shrink. The transition from the growing phase to the shrin
ing phase is called a catastrophe and the reverse transit
rescue.

From the physical and mathematical standpo
Dogterom and Leibler@2# proposed model equations to d
scribe and capture the main essential features of the dyn
instability of MTs. Although other theoretical attempts d
scribing the MT dynamics are available in the literature, su
as the two-state model by Hill@3#, the Dogterom and Leible
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model has been used by several authors in order to des
various aspects of MT dynamics and are often called
basic equations for the dynamic instability mechanism.

My aim in this paper is to point out that, rather than bei
a unique feature of MT motions, the dynamic instability b
longs to a class of stochastic processes frequently enc
tered in physics, chemistry, and biology. Indeed, it is sho
that the dynamic instability is a continuous space version
a variant of persistent random walks described by the t
graph process, which, in the high-frequency limit of altern
ing MT phases, becomes a simple diffusion process wit
drift term. The persistent random walk and its continuo
limit, the telegrapher’s equation, are known in the literatu
since their introduction by Taylor@5# as an attempt to de
scribe the turbulent diffusion and by Goldstein@6# for the
propagation of electromagnetic waves in conducting me
Most of the telegrapher’s equations encountered in the lite
ture deal with the situation where speeds of the walker
either directions are the same and the interconverting
quencies between these velocities are also equal. For
case, solutions of the telegrapher’s equation subjected
variety of boundary conditions have been studied by Mas
iver et al. @7#. Meanwhile, in the dynamic instability of MTs
both the forward and backward velocities are different
well for the interconverting frequencies. This results in
additional convective term and a cross derivative with
spect to the position and time in the telegrapher equation.
such a generalized telegrapher equation, analytical solut
with appropriate initial and boundary conditions are derive

Moreover, it has been shown recently by Bicout a
Szabo@8# that the persistent random walk can be regarded
a simple model for the dynamics in phase space and so
Wang-Uhlenbeck boundary conditions problem@4# can be
solved exactly. As a generalization to these results, ana
expressions for the first passage time distributions of a MT
the nucleating site~origin! are calculated.

The rest of the paper is organized as follows. In Sec. I
present the essence of the theoretical model proposed
6656 © 1997 The American Physical Society
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56 6657GREEN’S FUNCTIONS AND FIRST PASSAGE TIME . . .
Dogterom and Leibler, establish the equivalence between
dynamic instability and the telegraph process, and derive
corresponding boundary-free Green’s functions. The der
tion of first passage time distributions of a MT to the nuc
ating site is outlined in Sec. III. In Sec. IV the reduce
Green’s function~obtained in averaging over the equilibriu
distribution of initial velocity! is evaluated and the momen
of the time-dependent position of the MT-free end are a
lyzed. The diffusion limit of the dynamic instability mecha
nism is discussed in Sec. V and the catastrophe time di
bution ~or the distribution of MT lifetime to the nucleatin
site! is calculated. Some remarks on the qualitative rese
blance of the dynamic instability and the fractional Browni
motion are presented in Sec. VI.

II. UNRESTRICTED GREEN’S FUNCTIONS

The Dogterom-Leibler model@2# assumes that MTs ar
rigid linear polymers having one end anchored to a nucle
ing flat surface. All MTs, whatever their length, are suf
ciently far apart to be considered as independent and
grow, by their free end, perpendicularly to the nucleat
planar surface. As a simple model of single-stranded po
mer, the MT free end is either in the growing phase~phase
‘‘ 1’’ !, in which the MT grows with the average speedv1 ,
or in the shrinking phase~phase ‘‘2 ’’ !, in which the MT
shrinks with the average speedv2 , with random transitions
between these two macroscopic states. The frequenc
switching from the growth to shrinkage isf 1 ~the catastro-
phe frequency! and for the reverse switching from th
shrinkage to growth isf 2 ~also called the rescue frequency!.
The overall rate of growth is controlled by bothv1 and f 1

which depend on the local concentration of free tubu
dimers near the MT’s tip, whilev2 and f 2 can be supposed
as constants. For simplicity, the positionx(t) of the MT free
end is singled out as the only relevant coordinate for
dynamics~i.e., one-dimensional problem!, so that it is pos-
sible to define the probability densitiesP1(x,t) andP2(x,t)
of finding at timet the MT in the phases1 and2, respec-
tively, with its free end at a distancex. ~Later onx, up to an
additive constant, will be identified to the MT length.! Ne-
glecting the free tubulin concentration variations in the M
dynamic process, the dynamic instability’s equations gove
ing the time evolution ofP1(x,t) andP2(x,t) are @2#

]

]tS P1

P2
D 5L S P1

P2
D , ~2.1a!

L5S 2v1

]

]x
2 f 1 f 2

f 1 v2

]

]x
2 f 2

D . ~2.1b!

Equations~2.1a! describes the evolution of the state variab
x(t) that obeys the dynamical equation

dx

dt
5v~ t !, ~2.2!
he
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where the stochastic velocityv(t) is a dichotomous Markov
noise that takes valuesv1 with probability g1 and 2v2

with probabilityg2 . The switches ofv(t), 2v2 
f 1

f 2
v1, are

Poisson processes such that the respective probabilities
be described by the first-order kinetic equations

d

dtS g1

g2
D 5S 2 f 1 f 2

f 1 2 f 2
D S g1

g2
D ~2.3!

for which the solutions are

g1~ t !5
f 2

v
1Fg1~0!2

f 2

v Ge2vt, ~2.4a!

g2~ t !5
f 1

v
1Fg2~0!2

f 1

v Ge2vt, ~2.4b!

with g1(0) andg2(0) the initial conditions and such tha
g1(t)1g1(t)51 for all times, expressing the conservatio
of the total probability.v21 ~with v5 f 11 f 2) denotes the
mean time between switches ofv(t), i.e., the average time
during whichv(t) keeps the same value.v21 is also called
the persistence time to emphasize the fact that during
time the MT persists on average in the same growing
shrinking phase. Defining the instantaneous average velo
as

^v~ t !&5v1g1~ t !2v2g2~ t !, ~2.5!

one can show that the velocity relaxation~or correlation!
function reads

^v~ t !&2^v~`!&

^v~0!&2^v~`!&
5e2vt, ~2.6!

where the mean timev21 between switches ofv(t) is also
the velocity relaxation time. For time scales longer thanv21,
the average velocity relaxes towards^v(`)& which is, in
fact, the steady-state average velocity~henceforth denoted by
V) given by

^v~`!&5V5
v1 f 2

v
2

v2 f 1

v
. ~2.7!

V is the key quantity to distinguish the two different dynam
ics of MT growth @2#. In the ‘‘unlimited’’ regime the MT
continuously grows in the course of time with the avera
speedV.0, while in the dynamic instability regime~also
called the ‘‘limited’’ or ‘‘bounded’’ regime! that holds for
V,0, the system of MT is characterized by an equilibriu
distribution of MT lengths. Roughly speaking, whenV.0
the catastrophe events are rare and the MT grows on ave
whereas forV,0 the catastrophe events become so frequ
that there is a balance between growth and shrinking r
that gives a steady-state length of MT. The transition
tween these two regimes takes place at the thresholdV50
where the MT is likely to experience a symmetric rando
walk. Thus, depending upon the local value ofV, a MT can
successively experience different growth regimes. It is th
important for the characterization of each regime to de
mine the Green’s function that describes the time evolut
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6658 56D. J. BICOUT
of the free end MT for arbitrary values ofV. For that pur-
pose, we start from the pair of coupled first-order equati
~2.1a!. By combining them, one can show that the dynam
instability equations can be rewritten as a generalized te
rapher’s equation~uncoupled second-order equation! as

]2Pi

]t2
1v

]Pi

]t
52Dv

]2Pi

]t]x
1vD

]2Pi

]x2
2vV

]Pi

]x
, i 56,

~2.8!

where Dv5v12v2 is the difference between the grow
and shrinkage velocities andD5v1v2 /v is the effective
diffusion coefficient. Equation~2.8! shows that the telegrap
process, which originates from a persistent random walk
the underlying stochastic process for the dynamic instabi
The propagation of the MT free end is partially wavelike a
partially diffusive. Notice that Eq.~2.8! differs from the te-
legrapher’s equation commonly encountered in the litera
by the presence of a convective term and a cross deriva
with respect of position and time. Since Eq.~2.8! is a hyper-
bolic equation @the discriminant (Dv)214vD5(v1

1v2)2.0#, the MT growing or shrinking waves canno
propagate faster thanv1 and 2v2 , respectively. The MT
free end is therefore confined within the ‘‘light cone
2v2t,x,v1t at any time. Moreover, sinceP1 and P2

satisfy the same telegrapher’s equation, the only way
make the difference between them is to look for initial a
boundary conditions. In that respect, the complete desc
tion of a MT will be obtained from the knowledge of th
Green’s functionsP i j (x,tux0) ~with i , j 52,1), which is
the probability density that a MT initially in phasej with
length x0 will be found in phasei with length x at time t
later. In what follows, we focus on the unrestricte
~boundary-free! Green’s functions. In order to derive expre
sions for the four Green’s functionsP i j (x,tux0) that satisfy
the telegrapher’s equation in Eq.~2.8!, we consider the two
different sets of initial conditions.

A. Microtubule initially in the growing phase

At t50 the MT is in the phase1 @i.e., g1(0)51 and
g2(0)50] and has lengthx0, which corresponds to the con
ditions

P11~x,t50ux0!5d~x2x0!, ~2.9a!

P21~x,t50ux0!50. ~2.9b!

Since the telegrapher’s equation is a second-order equa
we need a second initial condition for the time derivative
the Green’s function. This is obtained by substituting E
~2.9! into Eq. ~2.1a! to give

]P11

]t U
t50

52v1

]

]x
d~x2x0!2 f 1d~x2x0!,

~2.10a!

]P21

]t U
t50

5 f 1d~x2x0!. ~2.10b!

Laplace transforming Eq.~2.8!, we get
s
c
g-

is
.

re
ve

to

p-

on
f
.

TS P̂11

P̂21

D 5S 2s2 f 21v2

]

]x

2 f 1

D d~x2x0!, ~2.11!

where the operatorT is given by

T5vD
]2

]x2
2~vV1Dvs!

]

]x
2s~s1v! ~2.12!

and the Laplace transformp̂(s) of any functionp(t) is de-
fined as p̂(s)5*0

`e2stp(t) dt. Let Ĝ0(x,sux8) be the
Green’s function associated withT and satisfying the differ-
ential equation

TĜ0~x,sux8!5d~x2x8!. ~2.13!

OnceĜ0(x,sux8) is known, the Green’s functionsP̂11 and
P̂21 can be obtained from the integral

S P̂11

P̂21

D 5E
2`

`

dx8 Ĝ0~x,sux8!S 2s2 f 21v2

]

]x8

2 f 1

D
3d~x82x0!. ~2.14!

On the other hand, one can show that the solution of
~2.13! is written

Ĝ0~x,sux8!5
1

vD~l22l1!
@H~x82x!el1~x2x8!

1H~x2x8!el2~x2x8!#, ~2.15!

where H( ) is the Heaviside step function defined
H(x)50 for x,0 and H(x)51 for x.0 and the
s-dependent eigenvaluesl1 andl2 are

l1

l2
J 5

vV1Dvs

2vD
6F S vV1Dvs

2vD D 2

1
s~s1v!

vD G1/2

.

~2.16!

Substituting Eq.~2.15! into Eq. ~2.14!, we find

P̂11~x,sux0!5
s1 f 22l1v2

vD~l12l2!
H~x02x!el1~x2x0!

1
s1 f 22l2v2

vD~l12l2!
H~x2x0!el2~x2x0!

~2.17!

and

P̂21~x,sux0!5
f 1

vD~l12l2!
H~x02x!el1~x2x0!

1
f 1

vD~l12l2!
H~x2x0!el2~x2x0!.

~2.18!

As a check, one can easily verify that
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E
2`

`

@P̂11~x,sux0!1P̂21~x,sux0!#dx5
1

s
. ~2.19!

Inverting next these Laplace transform expressions@see the
Appendix for the details of calculations# we finally obtain

P11~x,tux0!5dS t2
x2x0

v1
De2 f 1t

v1
1FHS t1

x2x0

v2
D

1HS t2
x2x0

v1
D G f 2

v11v2
S z2

z1
D 1/2

3e~z11z2!/2I 1~Az1z2!, ~2.20!

P21~x,tux0!5FHS t1
x2x0

v2
D

1HS t2
x2x0

v1
D G f 1

v11v2

3e~z11z2!/2I 0~Az1z2!, ~2.21!

in which we have defined dimensionless variables

z15
2 f 2

v11v2
~x2x02v1t !, ~2.22a!

z25
2 f 1

v11v2
~x02x2v2t ! ~2.22b!

and I 0( ) and I 1( ) are the modified Bessel functions of o
der zero and one, respectively. The dependence ofP i j upon
z2 andz1 is characteristic of traveling waves moving wi
the speedv2 in the negative-x direction and withv1 in the
positive-x direction.

B. Microtubule initially in the shrinking phase

In this case the initial conditions are

P12~x,t50ux0!50, ~2.23a!

P22~x,t50ux0!5d~x2x0! ~2.23b!

and the initial time derivatives are

]P12

]t U
t50

5 f 2d~x2x0!, ~2.24a!

]P22

]t U
t50

5v2

]

]x
d~x2x0!2 f 2d~x2x0!. ~2.24b!

The Laplace transform of the Green’s functions satisfies
differential equation

TS P̂12

P̂22

D 5S 2 f 2

2s2 f 12v1

]

]x
D d~x2x0!. ~2.25!

As outlined above, one can show that
e

P̂12~x,sux0!5
f 2

vD~l12l2!
H~x02x!el1~x2x0!

1
f 2

vD~l12l2!
H~x2x0!el2~x2x0!

~2.26!

and

P̂22~x,sux0!5
s1 f 11l1v1

vD~l12l2!
H~x02x!el1~x2x0!

1
s1 f 11l2v1

vD~l12l2!
H~x2x0!el2~x2x0!.

~2.27!

One still has the conservation of the probability density

E
2`

`

@P̂12~x,sux0!1P̂22~x,sux0!#dx5
1

s
. ~2.28!

Proceeding as above to invert the Laplace transform s
tions, we find

P12~x,tux0!5FHS t1
x2x0

v2
D1HS t2

x2x0

v1
D G f 2

v11v2

3e~z11z2!/2I 0~Az1z2!, ~2.29!

P22~x,tux0!5dS t1
x2x0

v2
De2 f 2t

v2

1FHS t1
x2x0

v2
D

1HS t2
x2x0

v1
D G f 1

v11v2

3S z1

z2
D 1/2

e~z11z2!/2I 1~Az1z2!.

~2.30!

Some relations between Green’s functions

One can realize by simple examination that the Gree
functions derived above are symmetric each others. For
ample,P j i is obtained fromP i j by changing intoP i j the
variablesf 1 and z1 by f 2 and z2 , respectively, and vice
versa. In addition, these are related through the detai
balance-like relations as

z1@P11~x,tux0!2P11~x,0ux0!#5z2@P22~x,tux0!

2P22~x,0ux0!# ~2.31a!

f 1P12~x,tux0!5 f 2P21~x,tux0!. ~2.31b!

C. Absorbing and reflecting boundary conditions

We now sketch the boundary conditions we have to
when one is interested in the problem of MT evolution in t
presence of absorbing and/or reflecting boundary conditio
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To derive these conditions one can forget for the moment
initial state of the MT so that we can work with the pro
ability densityP1 andP2 . Nonetheless, the position of th
boundary relative to the initial MT positionx0 needs to be
specified. One has, for example, the following conditions

1. Absorbing boundary condition at x5a<x0

For a MT starting from the positionx0.a, the pointx5a
is absorbing if the probability of finding a MT atx5a with
velocity v1 is zero, i.e,

P1~x5a,t !50. ~2.32!

Such a boundary condition was previously introduced
Wang and Uhlenbeck@4# when dealing with the Kramers
Klein equation. Although Eq.~2.32! sufficiently specifies the
absorbing boundary condition, one often wants~for practical
reasons! to have an additional requirement for the phase2.
This can be achieved, for example, in substituting Eq.~2.32!
into Eq.~2.1a!. However, it convenient to emphasize that t
resulting condition as obtained is fragile and depends on
differential equation we are using, so its use requires so
cautions.

2. Reflecting boundary condition at x5a<x0

The presence of a reflecting barrier means that no ‘‘p
ticle’’ can pass beyondx5a, i.e., the MT length cannot be
smaller thana. This imposes the conservation of probabili
density:

E
a

`

@P1~x,t !1P2~x,t !#dx51. ~2.33!

As a consequence, we have

E
a

` ]n

]tn
@P1~x,t !1P2~x,t !#dx50, n>1. ~2.34!

By adding now the coupled equation~2.1a! and next using
relation ~2.34! in the summed equation with the assumpti
P6(`,t)50, we obtain an equation for a reflecting barrie

v2P2~x5a,t !5v1P1~x5a,t !. ~2.35!

This is equivalent to saying that the total flu
@J(x,t)5v1P1(x,t)2v2P2(x,t)# of MTs across the bar
rier at x5a is zero, so that the weighted probabilities
finding a MT atx5a are both equal. Here also the simil
boundary condition is encountered when dealing with
Kramers-Klein equation@4#.

Combining Eqs.~2.32! and ~2.35! yields the radiation
boundary condition

J~x5a,t !5kP1~x5a,t !, x0.a, ~2.36!

where k is the absorption rate. The purely reflecting a
absorbing boundary conditions correspond tok50 and
k→` limits, respectively. All the above conditions can al
be derived in the case wherex0,a or whenx0 lies between
two barriers.
e

y

e
e

r-

e

III. FIRST PASSAGE TIME DISTRIBUTIONS

One of the problems where the boundary conditions
very important is the calculation of the mean lifetime or t
evaluation of the full distribution of lifetimes of a MT in the
presence of an absorbing barrier. Here we outline how fi
passage time distributions that a MT initially atx0 and in
either states1 and2 reaches the absorbing nucleating s
at x50 for the first time. To this end, we need to compu
first the survival probabilities that provides the complete d
namical description of the fate of the MT. Denoting b
S1(tux0) and S2(tux0) the survival probabilities that a MT
starting out atx0.0 in states1 and 2, respectively, and
propagating in the whole available space has not yet reac
at time t the absorbing barrier atx50, one can show tha
S1(tux0) and S2(tux0) obey the coupled set of differentia
equations

]

]tS S1

S2
D 5L†S S1

S2
D , ~3.1a!

L†5S v1

]

]x0
2 f 1 f 1

f 2 2v2

]

]x0
2 f 2

D , ~3.1b!

with the initial conditionS1(0ux0)5S2(0ux0)51. Since the
initial position x0.0, one requires that the ‘‘particle’’ mus
not only reach the barrier but also be moving in the rig
direction, say, in the negative-x direction ~or moving with
velocity 2v2) to satisfy the absorbing condition. In thi
case, the adjoint boundary condition to Eq.~2.32! reads

S2~ tux0!50 if x050. ~3.2!

This implies that the survival probability of a MT atx050
but in the growing phase is nonzero and has to be de
mined. Laplace transforming Eq.~3.1a!, we get

]

]x0
S Ŝ1

Ŝ2

D 5MS Ŝ1

Ŝ2

D 1S 21

v1

1

v2

D , ~3.3!

in which we have used the initial conditio
S1(0ux0)5S2(0ux0)51 and introduced the matrixM de-
fined by

M5S s1 f 1

v1
2

f 1

v1

f 2

v2
2

s1 f 2

v2

D . ~3.4!

The s-dependent eigenvaluesq1 andq2 of M are
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q1

q2
J 52

@v1 f 22v2 f 11~v12v2!s#

2v1v2
6H F @v1 f 22v2 f 11~v12v2!s#

2v1v2
G2

1
s~s1 f 11 f 2!

v1v2
J 1/2

, ~3.5!
es

in

as

-

te
cit

-
a
ap

is,
ove.

te
’’

l to

,

on-

-

and the corresponding eigenvectorsu1 andu2 are

u1,25S 1

c1,2
D , c1,25

f 2

s1 f 21q1,2v2
. ~3.6!

It follows that the general solution of Eq.~3.3! is therefore

S Ŝ1~sux0!

Ŝ2~sux0!
D 5

1

sS 1

1D 1Aeq1x0S 1

c1
D 1Beq2x0S 1

c2
D ,

~3.7!

whereA and B are unknown constants. Since probabiliti
Ŝ6(sux0) might be bounded asx→`, this requires us to
haveA50. The remaining constantB is obtained in using
the boundary condition in Eq.~3.2!. We find

Ŝ1~sux0!5
1

sF12S s1 f 21v2q2

f 2
Deq2x0G , ~3.8a!

Ŝ2~sux!5
1

s
@12eq2x0#. ~3.8b!

It may be interesting, as a check, to consider the two limit
cases. Whenf 250, i.e., once the MT is in state2, it stays
there until it disappears at the nucleating site. In this c
both the survival probabilities are equal to one,S6(tux0)51,
up to the timet5x0 /v2, after which they are zero. Con
versely, forf 150, i.e., once the MT starts in state1, it stays
there forever so thatS1(tux0)51 for all times and
S2(tux0)512H(t2x0 /v2)e2 f 2t.

Let us return to the survival probabilities and no
that q2 can be expressed in term of steady-state velo
V @cf. Eq. ~2.7!#, the difference of velocitiesDv, and
the diffusion coefficient D as q2(s)52@vV1Dvs1
A(vV1Dvs)214vDs(s1v)]/2vD. Thus, depending on
the sign of V, we have q2(0)50 for V<0 and
q2(0)52V/D for V.0. It follows that ast→`, the sur-
vival probabilities decrease to zero whenV<0 and to a finite
value less than one forV.0, meaning that in the latter situ
ation once the MT has been nucleated it never shrinks b
to the nucleating site. This allows us to define the esc
probabilities that a MT starting out fromx0 never reaches the
nucleating site ase6(x0)5S6(`ux0). Multiplying by s Eqs.
~3.8a! and ~3.8b! and taking next thes→0 limit, we find

e1~x0!5H 0, V<0

12S v2 f 1

v1 f 2
DexpF2

Vx0

D G , V.0,
~3.9a!

e2~x0!5H 0, V<0

12expF2
Vx0

D G , V.0.
~3.9b!
g

e

y

ck
e

We see that whenV.0 and such thatV@D/x0, most of
MTs grow indefinitely regardeless their initial state, that
the characteristic of the unbounded regime mentioned ab
In general, for an arbitrary value ofV, the survival probabili-
ties start from one att50 and decrease to a certain fini
value ast→`. One may then define the ‘‘relaxation times,
denoted byt6(x0), thatS6(tux0) relaxes towardS6(`ux0):

t6~x0!5E
0

`FS6~ tux0!2S6~`ux0!

12S6~`ux0! Gdt, ~3.10!

in which we have usedS6(0ux0)51. WhenS6(`ux0)50,
i.e., when the escape probabilities are identically equa
zero, t6(x0) reduce the time areas underS6(tux0). These
are, by definition, the mean first passage times tox50 for a
MT initially at x0 and in state1 or 2. On the other hand
when the escape probabilities are nonzero,t6(x0) represent
the time areas betweenS6(tux0) and the line 12S6(`ux0).
In this caset6(x0) denote the mean first passage times c
ditional that a MT, initially atx0 and in state1 or 2, has
reached the absorbing boundary atx50. In each case, the
first passage time distributions, denoted byF6(tux0), can be
related to the corresponding survival probabilities as

F6~ tux0!52
1

12S6~`ux0!

dS6~ tux0!

dt

or
~3.11!

F̂6~sux0!5
12sŜ6~sux0!

12S6~`ux0!
.

A. Bounded regimeV<0

Here we havee6(x0)5S6(`ux0)50. Substituting Eqs.
~3.8a! and ~3.8b! into Eq. ~3.11! yields

F̂1~sux0!5S s1 f 21v2q2

f 2
Deq2x0, ~3.12a!

F̂2~sux0!5eq2x0. ~3.12b!

Using next the relation in Eq.~A9!, and after some calcula
tions, we finally end up with expressions

F1~ tux0!5HS t2
x0

v2
D 2 f 1 f 2

v11v2

e2~z1
0

1z2
0

!/2

z1
0

3H x0I 0~Az1
0 z2

0 !1
v1

f 1
S z2

0

z1
0 D 1/2

I 1~Az1
0 z2

0 !J ,

~3.13a!
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F2~ tux0!5dS t2
x0

v2
De2 f 2t1HS t2

x0

v2
D 2 f 1 f 2

v11v2

x0

Az1
0 z2

0

3e2~z1
0

1z2
0

!/2I 1~Az1
0 z2

0 !, ~3.13b!

where we have defined the dimensionless variables

z1
0 5

2 f 2

v11v2
~v1t1x0!, ~3.14a!

z2
0 5

2 f 1

v11v2
~v2t2x0!. ~3.14b!

Equations~3.13a! and~3.13b! represent the generalization o
expressions previously derived in Ref.@8#. Note that as a
direct reading of the boundary condition in Eq.~3.2!,
F2(tu0)5d(t) while F1(tu0)Þd(t), meaning that the mea
first passage time or the lifetime of a MT starting at t
nucleating site with an outgoing velocity is nonzero.

The mean first passage times can be obtained from
relation in Eq.~3.10! as t6(x0)5Ŝ6(0ux0). By taking the
s→0 limit in Eqs. ~3.8a! and ~3.8a! we end up with the
expressions

t1~x0!52
x0

V
2

v11v2

vV
, ~3.15a!

t2~x0!52
x0

V
. ~3.15b!

Similar expressions were previously derived by Rubin@9#
using a clever but complicated derivation based on the
crete two-phase model of dynamic instability proposed
Hill @3#. These times decrease when the velocity gets la
and diverge atV50. Note thatt1(0)→1/f 1 asv2→` and
t1(0)→0 as f 1→`. In averaging next these lifetimes ove
the initial equilibrium velocity, we obtain the overall mea
lifetime t(x0) to x50 as

t~x0!5g2~`!t2~x0!1g1~`!t1~x0!

52
x0

V
2

~v11v2! f 2

v2V
. ~3.16!

B. Unbounded regimeV>0

Since nowe6(x0)5S6(`ux0)Þ0, direct application of
the relation in Eq.~3.11! straightforwardly leads to

F̂1~sux0!5Fv1~s1 f 21v2q2!

v2 f 1
GexpH S V

D
1q2D x0J ,

~3.17a!

F̂2~sux0!5expH S V

D
1q2D x0J . ~3.17b!

The time-dependentF1(tux0) and F2(tux0) are then ob-
tained by multiplying Eqs. ~3.13a! and ~3.13b! by
(v1 f 2 /v2 f 1)exp(Vx0 /D) and exp(Vx0 /D), respectively. As
above, we still haveF2(tu0)5d(t) andF1(tu0)Þd(t). De-
he

s-
y
er

riving Eqs.~3.17a! and ~3.17b! with respect tos and taking
thes→0 limit, we obtain the expressions for the condition
mean first passage times as

t1~x0!5S 1

V
1

Dv
vD D x01

v11v2

vV
, ~3.18a!

t2~x0!5S 1

V
1

Dv
vD D x0 . ~3.18b!

Except for the additional termDv/vD in these formulas, we
see that both the ordinary and conditional mean first pass
times are identical. Depending on the sign ofDv, it is pos-
sible for uVu fixed to find a set of parametersv6 and f 6 such
that the conditional mean first passage times in the
bounded regime (V.0) are smaller or greater than the me
first passage times in the bounded regime (V<0); the equal-
ity in both regimes holding forDv50, i.e.,v15v2 .

As above, the overall mean relaxation time is obtained
averaging these times over the equilibrium velocity distrib
tion. We get

t~x0!5S 1

V
1

Dv
vD D x01

~v11v2! f 2

v2V
. ~3.19!

IV. REDUCED GREEN’S FUNCTIONS AND MOMENTS

In practice one is often interested in following a MT pr
pared in the state where the initial velocity is chosen fro
the equilibrium velocity distribution, that is to say, that
t50 the MT is in the state1 with the probabilityg1(`) and
in the state2 with the probability g2(`). The reduced
Green’s function is then defined as

Pi~x,tux0!5(
j

gj~`!P i j ~x,tux0!, ~4.1!

wherePi(x,tux0) denotes now the probability density that
MT initially of length x0 will be found in phasei with length
x at the time t later. Denoting next byP(x,tux0)5
P1(x,tux0)1P2(x,tux0) the probability density that at time
t the MT free end is found atx given that it was initially at
x0, we have

P~x,tux0!5
f 2

v
@P11~x,tux0!1P21~x,tux0!#

1
f 1

v
@P12~x,tux0!1P22~x,tux0!#.

~4.2!

P(x,tux0) satisfies the same telegrapher’s equation thatPi
andP i j do, i.e., Eq.~2.8!, but with the initial conditions

P~x,t50ux0!5d~x2x0!, ~4.3a!

]P

]t U
t50

52V
]

]x
d~x2x0!. ~4.3b!
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We may investigate the possibility of an equilibrium dist
bution that we denote byPeq(x). Eliminating all time deriva-
tives of P in Eq. ~2.8! yields

D
]2Peq

]x2
2V

]Peq

]x
50. ~4.4!

To emphasize the one-to-one relation betweenx and the MT
length, we can, without loss of generality, restrictx to take
only positive values. This differential equation is eas
solved with the conditions that the equilibrium distribution
bounded, i.e., limx→`Peq(x)50, and the probability density
is conserved, i.e.,*0

`Peq(x)dx51, or equivalently, in using
the reflecting boundary condition in Eq.~2.35! for a50. One
finds that in the unlimited regime~i.e.,V>0) the equilibrium
distribution does not exist, while in the bounded regime~i.e.,
V,0) the steady-state length distribution is an exponen
given by:

Peq~x!5 l 21e2x/ l , ~4.5a!

l 52
D

V
5

v1v2

v2 f 12v1 f 2
, ~4.5b!

wherel is the average MT length that diverges at the thre
old V50, i.e., whenv2 f 15v1 f 2 .

The statistics of the MT dynamics can also be charac
ized from the various moments ofx, in particular their de-
pendence on timet. The moments are defined as

mn~ t !5E
2`

`

~x2x0!nP~x,tux0!dx ~4.6!

plus the relations

E
2`

`

~x2x0!n
]P

]x
dx52nmn21~ t !, ~4.7a!

E
2`

`

~x2x0!n
]2P

]x2
dx5n~n21!mn21~ t !. ~4.7b!

All moments can be obtained from the Laplace transform
Eq. ~2.8! by multiplying by (x2x0)n and integrating overx
from 2` to `. We get forn50 andn51:

m̂0~s!5
1

s
⇔m0~ t !51, ~4.8a!

m̂1~s!5
V

s2
⇔m1~ t !5Vt, ~4.8b!

and forn>2 the moments are given by the recurrence

m̂n~s!5
sDv1vV

s~s1v!
nm̂n21~s!1

vD

s~s1v!
n~n21!m̂n22~s!

~4.8c!

From an experimental standpoint, the most accessible q
tity for any random walk process is the mean-square
placement
l

-

r-

f

n-
-

^Dx2~ t !&5m2~ t !2@m1~ t !#252DappH t2
1

v
~12e2vt!J

~4.9a!

.H vDappt
2 for vt!1

2Dappt for vt@1,
~4.9b!

in which we have introduced the apparent diffusion coe
cient defined by

Dapp5D2
V2

v F12
Dv
V G5

f 1 f 2~v11v2!2

v3
. ~4.10!

This expression of̂ Dx2(t)& is very similar to the one we
obtain for the classical Brownian motion. For small tim
scales compared to the velocity relaxation timev21,
^Dx2(t)&;t2, which is characteristic of deterministic motio
or a wave propagation process, and for large time sc
^Dx2(t)&;t, which is characteristic of Brownian diffusion
process with the diffusion coefficientDapp. The latter is the
diffusion coefficient we will determine from the standard d
viation based experiments. Due to the difference both
speedsv2 and v1 and in frequenciesf 2 and f 1 , the MT
free end appears to diffuse with a smaller diffusion coe
cient Dapp<D. This apparent diffusion coefficient, prev
ously obtained by Dogterom and Leibler@2# as being the
effective diffusion coefficient, reduces toD at the threshold
V50 or in the diffusion limitv→`. All of this suggests the
possibility to approximate the dynamic instability~or tele-
graph! process by a simple diffusion process. It worthwh
to note, however, that the difference betweenD and Dapp
indicates that taking thet→` limit ~as in the usual telegrap
process! in dynamic instability expressions does not lead
the correct diffusion limit.

V. DIFFUSION LIMIT OF THE DYNAMIC INSTABILITY

In order to gain more insight into the diffusion limit of th
dynamic instability process, we focus again on the proba
ity P(x,t)5P1(x,t)1P2(x,t) that the MT free end is atx
at time t and we consider in addition the probability flux
J(x,t)5v1P1(x,t)2v2P2(x,t). From Eq.~2.1a! one can
show that

]P

]t
1

]J

]x
50, ~5.1a!

]J

]t
1Dv

]J

]x
1vJ52vD

]P

]x
1vVP. ~5.1b!

In combining together these equations, one can easily s
that bothP(x,t) and J(x,t) satisfy the same telegrapher
equation in Eq.~2.8!. Equation~5.1a! expresses the conse
vation of the total probability density and Eq.~5.1b! de-
scribes the evolution of the probability flux. The integrat
form of Eq. ~5.1b! can be written as
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J~x,t !5e2vtJ~x2Dvt,0!1E
2`

`

dx8E
0

t

dt8

3d@x2x82Dv~ t2t8!#ve2v~ t2t8!

3F2D
]P

]x8
1VP~x8,t8!G . ~5.2!

Using the fact thatve2v(t2t8)→d(t2t8) asv→`, it is easy
show that

lim
v→`

J~x,t !5E
2`

`

dx8E
0

`

dt8d~ t2t8!d~x2x8!

3F2D
]P

]x8
1VP~x8,t8!G

52D
]P

]x
1VP~x,t !, ~5.3!

which gives Fick’s first law in the presence of a drift. Th
limit is the exact analog of the overdamped limit of the co
ventional Brownian motion. Combining Eqs.~5.1a! and~5.3!
leads to the diffusion equation~also known as the Wiene
process!

]P

]t
5D

]2P

]x2
2V

]P

]x
. ~5.4!

It is worthwhile to emphasize that the dynamic instability~or
the telegraph process! is a velocity jump process in which
the MT free end moves in a deterministic motion with
velocity randomly switching between two values accord
to a Poisson process, whereas its approximating diffus
process is a position jump process in which the MT stoch
tically moves from one position to another with the dens
distributionf(t) for pausing time between jumps also go
erned by a Poisson process, i.e.,f(t)5ve2vt. Equivalently,
Eq. ~5.4! describes the evolution of the state variablex(t)
obeying the dynamical equation

dx

dt
5V1z~ t !, ~5.5!

wherez(t) is the Gaussian stochastic velocity of mean z
and variancêz(t)z(t8)&52Dd(t2t8).

A. Restricted Green’s function

The differential equation~5.4! is easier to use than Eq
~2.8! and it can be solved explicitly. One of the interesti
situation for MTs corresponds to the case wherex is re-
stricted to the subspacex>0 by imposing the reflecting
boundary condition atx50, i.e.,

S D
]P

]x
2VPD U

x50

50. ~5.6!

Thus, with the initial conditionP(x,t50ux0)5d(x2x0), the
solution of Eq.~5.4! is given by@10#
-

n
s-

o

P~x,tux0!5
1

~4pDt !1/2H expF2
~x2x02Vt!2

4Dt G
1expF2

Vx0

D GexpF2
~x1x02Vt!2

4Dt G J
2

V

2D
expFVx

D GerfcFx1x01Vt

A4Dt
G , ~5.7!

where erfc@ # is the complementary error function. Lettin
t→`, we find that for V>0, P(x,tux0)→0 as t→`,
whereas forV,0, P(x,t→`ux0)5Peq(x), where the equi-
librium distributionPeq(x) is given by Eq.~4.5a!.

B. The catastrophe time distribution

Another interesting quantity to determine is the dens
distribution of catastrophe time, i.e., the time at which a M
initially of length x5x0 disappears for the first time in reach
ing the nucleating site atx50. The mean catastrophe time
something like the mean lifetime of a MT or the mean fi
passage time tox50 as discussed earlier in Sec. III In th
respect, the catastrophe time distribution is identical to
first passage time distribution. Here we derive similar e
pressions for the survival probability, the first passage ti
distribution, and the mean first passage time in the diffus
limit. Thus S(tux0) denotes the survival probability that
MT initially of length x5x0 is still in the system at timet in
the presence of the absorbing nucleating site atx50. The
catastrophe time distributionF(tux0) is, for V<0, the first
passage time distribution tox50 for an original MT of
lengthx5x0 and, forV.0, it is the conditional first passag
time distribution that a MT starting out atx0 has reached the
origin x50. Both S(tux0) and F(tux0) are related by the
same relations in Eq.~3.11! ~without the index6). In order
to determineS(tux0) we have to solve first Eq.~5.4! with the
initial condition P(x,t50ux0)5d(x2x0) and subjected to
the absorbing boundary condition atx50, that is to say,
P(x,tux0)50 for x or x050 ~here the forward and adjoin
boundary conditions are the same!. With these conditions the
solution of Eq.~5.4! is given by

P~x,tux0!5
1

~4pDt !1/2H expF2
~x2x02Vt!2

4Dt G
2expF2

Vx0

D GexpF2
~x1x02Vt!2

4Dt G J .

~5.8!

The survival probability is therefore obtained by integrati
Eq. ~5.8! over x from 0 to ` as

S~ tux0!5E
0

`

P~x,tux0!dx5
1

2
erfcF2x02Vt

A4Dt
G

2
1

2
expF2

Vx0

D GerfcFx02Vt

A4Dt
G . ~5.9!
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As discussed above, we may consider the escape proba
that is obtained by taking thet→` limit in Eq. ~5.9!. We
find

e~x0!5H 0, V<0

12expH 2
Vx0

D J , V.0.
~5.10!

This indicates that forV.0 catastrophe events are so ra
that a MT has a certain probability of persisting in the syst
without touching the nucleating site, while forV<0,
e(x0)50, showing that a MT will surely collapse tox50.

Using next Eq.~5.9! in the time derivative relation in Eq
~3.11!, we get the catastrophe time distribution as

F~ tux0!5
x0

~4pDt3!1/2
expF2

~x02Vt!2

4Dt G
3H 1, V<0

expH Vx0

D J , V.0,
~5.11!

where the additional exponential term forV.0 take care of
the normalization to one ofF(tux0). This expression repre
sents the diffusion limit of Eqs.~3.13a! and~3.13b! for V<0
and their analogous forV.0. For a timet fixed, F(tux0)
follows a shifted Wigner distribution~except for the addi-
tional exponential term forV.0) as a function of initial MT
length. At the transition thresholdV50, F(tux0) scales with
time as a power law,F(tux0);t23/2 for larger t, so that the
catastrophe time distribution has no finite moments. Wh
the diffusion is biased, i.e.,VÞ0, the distributionF(tux0)
has an exponential shoulder asF(tux0);t23/2e2t/tc. The
power law breaks down at aboutt5tc , wheretc is the cut-
off time scale at which the drift term and the diffusive ter
are comparable, namely,Vtc;ADtc. The precise expressio
of the cutoff timetc , obtained from Eq.~5.11!, is

tc5
4D

V2
. ~5.12!

As a consequence of the limitation to the power law,
moments of the catastrophe time distribution are now fin
For that purpose, it is convenient to work with the Lapla
transformed expression ofS(tux0):

Ŝ~sux0!5
1

sF12expH 2S V1AV214Ds

2D D x0J G .
~5.13!

By using this expression in Eq.~3.10!, we find that the mean
catastrophe time~equal to the mean first passage time to
nucleating site for the regimeV<0 or equal the conditiona
mean first passage time to the nucleating site for the reg
V.0), denoted bytd(x0), is simply given by

td~x0!5
x0

uVu
. ~5.14!
lity

n

e
.

e

e

This manifestly shows that the time area underS(tux0) in the
the regimeV<0 ~i.e., the mean first passage time to t
nucleating site! is exactly identical to the time area com
prised betweenS(tux0) and the line 12S(`ux0) for V.0
~i.e., the conditional mean first passage time to the nuclea
site!. Notice thattd(x0) corresponds to the diffusion limit
i.e., v→`, of the mean lifetimest(x0) given in Eqs.~3.16!
and~3.19!. It may be instructive to remark that the function
form of F(tux0) is also found in other dynamical systems, f
example, for the distribution of laminar phase duration in t
on-off intermittency@11# and for the distribution of the size
of the avalanche in the self-organized criticality@12#.

In some instances, the dynamic instability of MTs can
seen as an example of the on-off intermittency if we ident
the laminar phases to the elapsed times during which a
has not yet touched the nucleating site. Note also that du
the ‘‘MT laminar phases’’ the MT undergoes stochastic m
tion ~governed by the telegraph process! like the on-off in-
termittency observable~which can undergo chaotic motion!
does.

The term self-organized criticality was proposed@13# to
refer to a generic state of driven systems that, evolving
wards that state, may respond to a minor solicitation b
hierarchy of chain reactions that can propagate to an a
trary subset of the system throughout the entire system. S
a concept can manifestly be used to characterize the dyn
ics of a MT, which, for any original length, can abrupt
shrink to zero due to a catastrophe event or escape from
thanks to a rescue event. Moreover, the connection betw
the dynamic instability of MTs and the self-organized cri
cality is supported by the possibility of mapping the av
lanche propagation onto a random walk or a diffusion p
cess.

VI. CONCLUDING REMARKS

Fractional Brownian motion was introduced by Mande
brot and Van Ness@14# as a generalization to a convention
Brownian motion so as to describe long-range correlated
dom walks. A particle undergoing such a kind of motion h
a variance scaling with time likêDx2(t)&;t2H, whereH is
the Hurst exponent@15# such that 0,H,1. The essential
feature of the fractional Brownian motion is the manifes
tion of persistent and antipersistent trends in random wa
with H.1/2 and H,1/2, respectively. By persistent w
mean that an increase~a decrease! trend in the past tends o
the average to be followed by an increase~a decrease! trend
in the future, while the term antipersistent denotes the sit
tion where an increase trend is followed by a decreasing
and vice versa.H51/2 corresponds to the ordinary Brown
ian motion with independent steps of the walker.

It is obvious from the foregoing analysis that MTs u
dergo persistent random walks. Indeed, a MT initially in t
growing phase will persist in that phase, but once it beg
shrinking, it will continue to shrink. One would then b
tempted to conclude that the dynamic instability of a MT
similar to a fractional Brownian motion withH.1/2. Mean-
while, this is not so since both the mean-square displacem
of the MT given in Eq.~4.9b! and the catastrophe time dis
tribution in Eq.~5.11! lead to a Hurst exponent ofH51/2 as
for an ordinary Brownian motion. The similarity between th
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dynamic instability and the fractional Brownian motion
only qualitative. In fact, the persistent nature of the MT d
namics originates from its underlying persistent random w
in which one is given the probabilities of moving either
the same direction or in the reverse direction of the imme
ately preceding step. Such a process can be regarded
two-step correlated random walk. The persistence of
motions is also evidenced in the diffusion limit where t
MT dynamics is analogous to that of a particle diffusing in
linear potential, namely,U(x)52Vuxu @see, for example
Eq. ~5.5!#, where V is the steady-state velocity of a MT
Since in the absence of the diffusion the particle alwa
moves in such a way as to minimizeU(x), we clearly see
why an equilibrium distribution of MT lengths holds onl
whenV,0, i.e., when the pointx50 is attractive.

In the meantime we have to note that since veloc
switches are Poisson processes~or first-order kinetics! with
constant frequencies, a MT is equally likely to undergo
tastrophe and rescue events at any time, regardless of
long it has been growing or shrinking. The dynamic instab
ity discussed here is then Markovian. However, it is poss
that the MT dynamics exhibits memory effects. This m
occur, for example, when the catastrophe frequency beco
a function of time depending on how long the MT has be
growing @16,17#. Such a behavior can be modeled by cons
ering, for example, non-first-order kinetics for the veloc
transitions. It will be interesting to conduct similar studies
done above for such non-Markovian dynamics.

On the other hand, the diffusion coefficientD and the
steady-state velocityV ~therebyv1 andv2 as well asf 1 and
f 2) may become space dependent due to a special dist
tion of free tubulins, hence making the problem nonline
Here also, studying nonlinear effects on the dynamic ins
bility is of a great interest to address the question of s
organization of MTs. Finally, for practical concerns, the d
fusion approximation of the dynamic instability outline
above can provide a possible framework for investigating
non-Markovian and nonlinear dynamics of microtubules.
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APPENDIX A: INVERSION OF THE LAPLACE
TRANSFORM OF P̂ i j „x,szx0…

To illustrate how Laplace transformed Green’s functio
P̂ i j (x,sux0) are inverted we considerP̂11(x,sux0) for
x,x0:

P̂11~x,sux0!5
s1 f 22l1v2

vD~l12l2!
el1~x2x0!, x,x0 .

~A1!

In rewriting the eigenvaluesl1 andl2 as

l1

l2
J 5

vV1Dvs

2vD
6S v11v2

2v1v2
DA~s1b1!~s1b2!, ~A2!

with
-
k

i-
s a
T

s

y

-
ow
-
e

es
n
-

s

u-
.
-

f-

e

s

b1

b2
J 5

v1 f 21v2 f 162Av1v2 f 1 f 2

v11v2
, ~A3!

P̂11(x,sux0) becomes

P̂11~x,sux0!5
eV~x2x0!/2D

2v1~v11v2!H 2~v11v2!e2ys

3e2aA~s1b1!~s1b2!1@~v1 f 21v2 f 1!

1~v11v2!s#e2ys
e2aA~s1b1!~s1b2!

A~s1b1!~s1b2!
J ,

~A4!

where

a5S v11v2

2v1v2
D ~x02x!, ~A5!

y5
Dv

2Dv
~x02x!. ~A6!

Next denoting byp(t)5L21@ p̂(s)# the inverse Laplace
transform, we have

L21@e2ys#5d~ t2y!, ~A7!

L21@se2ys#52
]

]y
L21@e2ys#52

]

]y
d~ t2y!, ~A8!

L21F e2aA~s1b1!~s1b2!

A~s1b1!~s1b2!
G

5H~ t2a!e2~b11b2!t/2I 0S b12b2

2
At22a2D ,

~A9!

L21@e2aA~s1b1!~s1b2!#

52
]

]a
L21F e2aA~s1b1!~s1b2!

A~s1b1!~s1b2!
G

5d~ t2a!e2~b11b2!a/21H~ t2a!
a~b12b2!

2At22a2

3e2~b11b2!t/2I 1S b12b2

2
At22a2D , ~A10!

whereI 0( ) and I 1( ) are the modified Bessel functions of
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order zero and one, respectively, and the formula in Eq.~A9!
is obtained from Ref.@18#. Using Eqs.~A7!–~A10!, one ob-
tainsP11(x,tux0) for x,x0 as

P11~x,tux0!

5H~ t2y!H~ t2y2a!e2~b11b2!~ t2y!/2eV~x2x0!/2D

3
b12b2

2v1
F t2y2a

t2y1aG1/2

I 1S b12b2

2
A~ t2y!22a2D .

~A11!
-

s

After some rearrangements, we find

P11~x,tux0!5HS t1
x2x0

v2
D f 2

v11v2
S z2

z1
D 1/2

3e~z11z2!/2I 1~Az1z2!, ~A12!

wherez2 andz1 are defined in Sec. II. All Green’s function
P i j (x,tux0) are determined in this way.
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