PHYSICAL REVIEW E VOLUME 56, NUMBER 6 DECEMBER 1997

Green’s functions and first passage time distributions for dynamic instability of microtubules
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It is shown that the dynamic instability process describing the self-assembly and/or disassembly of micro-
tubules is a continuous version of a variant of persistent random walks described dggnitralizedelegra-
pher’'s equation. That is to say, a microtubule is likely to undergo stochastic traveling waves in which catas-
trophe and rescue events cannot propagate fastervthaandv , , respectively. For this stochastic process,
analytic expressions for Green’s functions of position and velocity of a microtubule and exact solutions for the
first passage time distributions of a microtubule to the nucleating site are obtained. It is shown that, in the
w—oe limit, where w1 is the persistence time, the dynamic instability process can be described by a diffusion
process in the presence of a drift term that, in fact, is the steady-state velocity of the microtubule. As a result,
the catastrophe time distributidhne., the distribution of microtubule lifetimes to the nucleating)séxhibits
a power law with an exponential cutoff &t|xo)~t~ % ~V7, wherer, is the time scale at which the drift
term and the diffusive term are comparalj®1063-651X97)06812-§

PACS numbes): 02.50.Ey, 05.40+j, 87.10+e, 64.60.Lx

I. INTRODUCTION model has been used by several authors in order to describe
various aspects of MT dynamics and are often called the
Microtubules (MTs) are polarized long protein fibers basic equations for the dynamic instability mechanism.
made of asymmetric tubulin dimers@) that involve sev- My aim in this paper is to point out that, rather than being
eral forms of cellular activities, for example, cell division, a unique feature of MT motions, the dynamic instability be-
transport network, and determination of cellular shapeslongs to a class of stochastic processes frequently encoun-
Nucleated MTge.qg., as nucleated from the centrosome durtered in physics, chemistry, and biology. Indeed, it is shown
ing the mitosi$ are tightly attached to the nucleated site bythat the dynamic instability is a continuous space version of
their minus ends and MTs exchange tubulin dimers between variant of persistent random walks described by the tele-
the soluble and polymer pools at their free plus ends usingraph process, which, in the high-frequency limit of alternat-
the dynamic instability mechanism. For instance, within theing MT phases, becomes a simple diffusion process with a
cell, the MT meshwork can be rapidly remodeled into totally drift term. The persistent random walk and its continuous
new configurations as a consequence of guanosine triphoBmit, the telegrapher’'s equation, are known in the literature
phate(GTP) hydrolysis and turnover rates afforded by dy- since their introduction by Taylof5] as an attempt to de-
namic instability. The term “dynamic instability” was intro- scribe the turbulent diffusion and by Goldstdis| for the
duced by Mitchison and Kirschnefl] to describe and propagation of electromagnetic waves in conducting media.
provide an explanation of the self-assembly and/or disassemdost of the telegrapher’s equations encountered in the litera-
bly process of MTs. The dynamic instability is defined by anture deal with the situation where speeds of the walker in
adsorption of free GTP tubulingvhich are later converted either directions are the same and the interconverting fre-
into guanosine diphosphat€DP)] in the growing phase that quencies between these velocities are also equal. For this
increases the MT length and a loss of GDP tubulins in thecase, solutions of the telegrapher’s equation subjected to a
shrinking phase that shorten the MT, with infrequent randonvariety of boundary conditions have been studied by Masol-
switches between these two states. The result is that theer et al.[7]. Meanwhile, in the dynamic instability of MTs,
growing MT will persist in the growing phase, but once it both the forward and backward velocities are different as
undergoes a change to a shrinking state, it will continue tavell for the interconverting frequencies. This results in an
shrink. The transition from the growing phase to the shrink-additional convective term and a cross derivative with re-
ing phase is called a catastrophe and the reverse transitionspect to the position and time in the telegrapher equation. For
rescue. such a generalized telegrapher equation, analytical solutions
From the physical and mathematical standpointwith appropriate initial and boundary conditions are derived.
Dogterom and Leiblef2] proposed model equations to de-  Moreover, it has been shown recently by Bicout and
scribe and capture the main essential features of the dynamzabq[8] that the persistent random walk can be regarded as
instability of MTs. Although other theoretical attempts de- a simple model for the dynamics in phase space and so the
scribing the MT dynamics are available in the literature, suchWang-Uhlenbeck boundary conditions probl¢d] can be
as the two-state model by H[IB], the Dogterom and Leibler solved exactly. As a generalization to these results, analytic
expressions for the first passage time distributions of a MT to
the nucleating sitéorigin) are calculated.
*FAX: (301) 496-0825. The rest of the paper is organized as follows. In Sec. II, |
Electronic address: bicout@speck.niddk.nih.gov present the essence of the theoretical model proposed by
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Dogterom and Leibler, establish the equivalence between thehere the stochastic velocip(t) is a dichotomous Markov
dynamic instability and the telegraph process, and derive throise that takes values, with probability g, and —v_
corresponding boundary-free Green’s functions. The derivaith probabilityg_ . The switches of (t),

—_ U _ —_
tion of first passage time distributions of a MT to the nucle- . vy, are

Poisson processes such that the respective probabilities can

ating site is outlined in Sec. lll. In Sec. IV the reduced . < ribed by the first-order kinetic equations
Green'’s functionobtained in averaging over the equilibrium
distribution of initial velocity is evaluated and the moments d(g. —f. f_\/g.
of the time-dependent position of the MT-free end are ana- —( )=( )( ) (2.3
lyzed. The diffusion limit of the dynamic instability mecha- dtig- fo —fJlg-
nism is discussed in Sec. V and the catastrophe time distrj - ;
bution (or the distribution of MT lifetime to thg nucleating for which the solutions are
site) is calculated. Some remarks on the qualitative resem- f f
blance of the dynamic instability and the fractional Brownian g.(t)=—+|g,(0)— —|e (2.439
motion are presented in Sec. VI. @ @
+ f+ — ot
Il. UNRESTRICTED GREEN'S FUNCTIONS 9-()=—+|9-(0)——je"*, (2.4

The Dogterom-Leibler modéfl2] assumes that MTs are i 4 (0) andg (0) the initial conditions and such that

rigid linear polymers having one end anchored to a nucleat- t) + tY=1 for all times. expressing the conservation
ing flat surface. All MTs, whatever their length, are suffi- 9+(0)+9. (1) : P 9

. . ) of the total probability.w ™ (with w=f, +f_) denotes the
ciently far apart to be considered as independent and ther¥1ean time Eetween ):/;Witches oft), i.e+., the)average time

grow, by their free end, perpendicularly to the nucleatingduring whichu (t) keeps the same value. ! is also called

pmlzzla{hzuli/flicferééser? ds.'smg.lt?]en:(.)r?%l]gf il)ng_lr?-strﬁgd;aolsgolyfhe persistence time to emphasize the fact that during that
X IS €l ! growing phap time the MT persists on average in the same growing or

“+"), in which the MT grows with the average speed, - - : :
or in the shrinking phaséohase "), in which the MT shrinking phase. Defining the instantaneous average velocity

shrinks with the average speed , with random transitions

betlwegn these two macroscopip states. The frequency of (v(1))=v,9.(t)—v_g_(1), (2.5
switching from the growth to shrinkage fs. (the catastro-

phe frequency and for the reverse switching from the one can show that the velocity relaxati¢or correlation
shrinkage to growth i$_ (also called the rescue frequency function reads

The overall rate of growth is controlled by both andf

which depend on the local concentration of free tubulin () —(v(=)

dimers near the MT'’s tip, while _ andf_ can be supposed (v(0))—{(v()) —e (2.6
as constants. For simplicity, the positin(t) of the MT free

end is singled out as the only relevant coordinate for thavhere the mean time ! between switches af(t) is also
dynamics(i.e., one-dimensional problemso that it is pos- the velocity relaxation time. For time scales longer thart,
sible to define the probability densiti€s_(x,t) andP _(x,t) the average velocity relaxes towards()) which is, in
of finding at timet the MT in the phases- and —, respec- fact, the steady-state average velo¢itgnceforth denoted by
tively, with its free end at a distance (Later onx, up to an V) given by

additive constant, will be identified to the MT lengtiNe-

glecting the free tubulin concentration variations in the MT vifo v f,

dynamic process, the dynamic instability’s equations govern- (v())=V= 0 o 2.7
ing the time evolution oP, (x,t) andP_(x,t) are[2]

V is the key quantity to distinguish the two different dynam-
g P, P, ics of MT growth[2]. In the “unlimited” regime the MT
( )— ( ) (2.1a continuously grows in the course of time with the average
speedV>0, while in the dynamic instability regiméalso
called the “limited” or “bounded” regime that holds for

a\P_| \pP_

9 V<0, the system of MT is characterized by an equilibrium
—v+§——f+ f_ distribution of MT lengths. Roughly speaking, wh&t>0
X
L= . (2.1p  the catastrophe events are rare and the MT grows on average,
f i _t whereas foV<<0 the catastrophe events become so frequent
* U-ox - that there is a balance between growth and shrinking rates

that gives a steady-state length of MT. The transition be-
tween these two regimes takes place at the threstiei@®

where the MT is likely to experience a symmetric random
walk. Thus, depending upon the local value\gfa MT can

successively experience different growth regimes. It is then
d_X: (t) 2.2 important for the characterization of each regime to deter-
de VW ' mine the Green’s function that describes the time evolution

Equations(2.139 describes the evolution of the state variable
x(t) that obeys the dynamical equation
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of the free end MT for arbitrary values &f. For that pur-
pose, we start from the pair of coupled first-order equations
(2.13. By combining them, one can show that the dynamic

instability equations can be rewritten as a generalized teleg-
rapher’s equatiorfuncoupled second-order equati@as

ﬁ++
.,

—-s—f_+v_—
X | 8(x—xo), (2.1D

—f,

where the operatorF is given by
PPy 9P

9P,
at? O T

28U tax

9P,
—Q —w
ax?

P,

ol 32
ox’

J
to T=wD—2—(a)V+AvS)——S(S+w)
IX 14

==,

(2.8

where Av=v, —v_ is the difference between the growth and the Laplace transforp(s) of any functionp(t) is de-
and shrinkage velocities anld=v,v_/w is the effective fined as p(s)=/ge Sp(t) dt. Let Gy(x,s|x’) be the
diffusion coefficient. Equatiof2.8) shows that the telegraph Green’s function associated withand satisfying the differ-
process, which originates from a persistent random walk, iential equation
the underlying stochastic process for the dynamic instability.

The propagation of the MT free end is partially wavelike and

partially diffusive. Notice that Eq(2.8) differs from the te- ~ .
legrapher’s equation commonly encountered in the literatur@nceGo(x,s|x") is known, the Green’s functiorid . , and
by the presence of a convective term and a cross derivativel_, can be obtained from the integral

with respect of position and time. Since Eg.8) is a hyper-

(2.12
2.

TGo(X,8|x")=8(x—x"). (2.13

bolic equation [the discriminant QAv)?+4wD=(v, N d
+v_)?>0], the MT growing or shrinking waves cannot A dx’ G | st

. . = X" Go(X,s|x") X
propagate faster tham, and —v_, respectively. The MT -, —w
free end is therefore confined within the “light cone” —f
—v_t<x<wv,t at any time. Moreover, sinc_, and P_ X S(X' —Xg). (2.14)

satisfy the same telegrapher's equation, the only way to
make the difference between them is to look for initial andop, the other hand, one can show that the solution of Eq.
boundary conditions. In that respect, the complete descripo 13 s written

tion of a MT will be obtained from the knowledge of the
Green’s functionslI;;(x,t|xo) (with i,j=—,+), which is
the probability density that a MT initially in phagewith
length x, will be found in phasd with lengthx at timet
later. In what follows, we focus on the unrestricted (2.15
(boundary-fregGreen'’s functions. In order to derive expres-

sions for the four Green’s functiord;; (x,t|xo) that satisfy ~where H() is the Heaviside step function defined as
the telegrapher’'s equation in E(.8), we consider the two H(x)=0 for x<0 and H(x)=1 for x>0 and the

1

’r_ Nqp(x—x")
—wD()\z_M)[H(x x)et

Go(X,s|x") =

+H(x—x")er2x X7,

different sets of initial conditions.

A. Microtubule initially in the growing phase

At t=0 the MT is in the phaser [i.e., g,(0)=1 and
g_(0)=0] and has length,, which corresponds to the con-
ditions

(2.99
(2.9p

IT, . (X,t=0|Xg) = 8(X—Xg),

IT_, (x,t=0|xy)=0.

Since the telegrapher’s equation is a second-order equation

we need a second initial condition for the time derivative of

the Green’s function. This is obtained by substituting Egs.

(2.9 into Eq.(2.19 to give

21
ot

0
O=—v+55(x—xo)—f+5(x—xo),

t

(2.103

g,
ot

(2.10H

=f, 6(Xx—Xp).
t=0

Laplace transforming Eq2.8), we get

s-dependent eigenvaluas and\, are

| Sl

Substituting Eq(2.19 into Eq.(2.14), we find

A\ 1 1/2

Ao

wV+Avs
2wD

s(s+w)
wD

wV+Avs
= +
2wD

(2.19

A S+f__)\10_ Ny (X—Xg)
H++(X,S|X0)=mH(XO—X)e 1 0
S+f,_)\207 N
- e — (X=Xo)
+ wD()\l—)\z)H(X Xg)€et2 X %o
(2.17
and
IT_,(x,8]x )=f—+H(x —x)erx~xo)
T D (NN ) O
fi

4 _ Az(xfxo)_
wD()\l—)\z)H(X Xg)€

(2.18

As a check, one can easily verify that
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Inverting next these Laplace transform expressi@es the
Appendix for the details of calculatiohsve finally obtain

X—Xo|e f+ X—Xo
I, , (X,t|Xq)= 6| t— +| H| t+
2 U _
x—xo) f_ (z)l’z
+H|t— —
U4 vytov_\zZ,
X e+ (\z,7_), (2.20
X_XO
IT_, (X,t|xg)=|H| t+ >
X—Xg fy
+ —
Ht Uy ) vytu_
xelZ+ ¥z (7. 7)), (2.21)

in which we have defined dimensionless variables

2f_
z+=v++v_(x—x0—v+t), (2.223
__ 2 2.22
z,—v++vi(x0—x—v,t) (2.22b

andly( ) andl( ) are the modified Bessel functions of or-
der zero and one, respectively. The dependendé;pfipon
z_ andz. is characteristic of traveling waves moving with
the speed _ in the negativex direction and withv | in the
positivex direction.

B. Microtubule initially in the shrinking phase

In this case the initial conditions are

IT, _(x,t=0|xy)=0, (2.233
IT_ _(x,t=0|Xg) = 8(X—Xg) (2.23b
and the initial time derivatives are
=f_d8(x—Xg), (2.243
ot =0

all_ _
ot

J
=v_—8(Xx—Xg)—f_8(x—xp). (2.24b
=0 ox

The Laplace transform of the Green’s functions satisfies the

differential equation

N —f_
H+_

m__

T d | 8(Xx—Xq).

U+ X

(2.29

_S_f+_

As outlined above, one can show that
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1 - - _ A 1(X—X0)
I, _(X,8|xo) wD()\l—)\z)H(XO x)e
f_ Ao(X—Xq)
LT VES WA
(2.26
and
A S+f++)\10+ \
- T T _ 1(X—Xp)
I1_ _(X,s|Xq) wD(M—Az)H(XO X)e
s+f, +N\ov
DG ag) X X0

(2.27

One still has the conservation of the probability density
° . 1
[ i s+ i1 _xsixptox=3. 228

Proceeding as above to invert the Laplace transform solu-
tions, we find

X—Xg X—Xg f_
I, _(X,tlxg)=|H|t+ —|+H|t—
v_ Uy vytu_
X eZ+ T2 (7, 7)), (2.29
II t|xg) = o t+X_xO e
*7(Xl |XO)_ v_ v_
( x—xo)
+|H| t+
U_
X—X f
+H| t- 0) -
U+ U++U,

X

z. 1/2
Z_) e(Z++Z,)/2| 1( /Z+Z_).
(2.30

Some relations between Green’s functions

One can realize by simple examination that the Green’s
functions derived above are symmetric each others. For ex-
ample, I1;; is obtained fromll;; by changing intoll;; the
variablesf, andz, by f_ andz_, respectively, and vice
versa. In addition, these are related through the detailed-
balance-like relations as

Z [T (X,tX) =TT 4 4 (X,01X0) 1=2Z_[TT_ _(X,t[Xo)
—II__(x,0[%g)] (2.319

fLIlL (X, t|xo) =T _TI_, (X,t|Xo). (2.31b

C. Absorbing and reflecting boundary conditions

We now sketch the boundary conditions we have to use
when one is interested in the problem of MT evolution in the
presence of absorbing and/or reflecting boundary conditions.
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To derive these conditions one can forget for the moment the . FIRST PASSAGE TIME DISTRIBUTIONS
initial state of the MT so that we can work with the prob-
ability densityP, andP_. Nonetheless, the position of the
boundary relative to the initial MT positiory needs to be
specified. One has, for example, the following conditions.

One of the problems where the boundary conditions are
very important is the calculation of the mean lifetime or the
evaluation of the full distribution of lifetimes of a MT in the
presence of an absorbing barrier. Here we outline how first
passage time distributions that a MT initially @ and in
. - ) either statest and — reaches the absorbing nucleating site

For a MT starting from the positior,>a, the pointx=a  atx=0 for the first time. To this end, we need to compute
is absorbing if the probability of finding a MT at=a with  first the survival probabilities that provides the complete dy-

1. Absorbing boundary condition at xa<xg

velocity v , is zero, i.e, namical description of the fate of the MT. Denoting by
S, (t]xg) and S_(t|x,) the survival probabilities that a MT
P, (x=a,t)=0. (2.32 starting out atx,>0 in states+ and —, respectively, and

N ] ) propagating in the whole available space has not yet reached
Such a boundary condition was previously introduced byat timet the absorbing barrier at=0, one can show that
Wang and Uhlenbeck4] when dealing with the Kramers- g (t|x.) andS_(t|x,) obey the coupled set of differential
Klein equation. Although Eq2.32) sufficiently specifies the equations
absorbing boundary condition, one often watiits practical
reasonsto have an additional requirement for the phase

This can be achieved, for example, in substituting 432 9 St it St (313
into Eq.(2.1a. However, it convenient to emphasize that the at\ S_ S/’ '
resulting condition as obtained is fragile and depends on the
differential equation we are using, so its use requires some
cautions. v i_f f
Taxg 7 +
2. Reflecting boundary condition at % a<x, Lt= P ,  (B.1b
The presence of a reflecting barrier means that no “par- f —v,a—xo—f,

ticle” can pass beyona=a, i.e., the MT length cannot be
smaller thara. This imposes the conservation of probability

density: with the initial conditionS_ (0|xo) = S_(0|x,)=1. Since the

initial position x>0, one requires that the “particle” must
not only reach the barrier but also be moving in the right
” _ direction, say, in the negative-direction (or moving with
P (x,t)+P_(x,t)]dx=1. 2.3 o ' . . » .
Ja[ +(xb) (.01 (233 velocity —v_) to satisfy the absorbing condition. In this

case, the adjoint boundary condition to EB.32 reads
As a consequence, we have

. g S_(t|xg)=0 if x,=0. 3.2
f —[PL(x,t)+P_(x,t)]Jdx=0, n=1. (2.39
a ot" This implies that the survival probability of a MT at=0

) _ ) but in the growing phase is nonzero and has to be deter-
By adding now the coupled equatid@.18 and next using mined. Laplace transforming E¢3.1a, we get
relation(2.34) in the summed equation with the assumption

P_(,t)=0, we obtain an equation for a reflecting barrier

-1
v_P_(x=a,t)=v,P (x=a,). (2.35 5[ S+ S, vy

L ) , — =M + , (3.3
This is equivalent to saying that the total flux JXo 3 3 1
[Jx,t)=v, P (x,;t)—v_P_(x,t)] of MTs across the bar- - - o

rier at x=a is zero, so that the weighted probabilities of

finding a MT atx=a are both equal. Here also the similar . . A .

boundary condition is encountered when dealing with thd" which we — have us_ed the initial _cond|t|0n

Kramers-Klein equatiofi4]. S_+(O|x0)=S,(0|x0)=1 and introduced the matrijl de-
Combining Egs.(2.32 and (2.35 yields the radiation n€d by

boundary condition

s+f, fi
J(x=a,t)=kP_ (x=a,t), Xy>a, (2.36 v, T,
where k is the absorption rate. The purely reflecting and M= f ot f ' (3.4

absorbing boundary conditions correspond #e=0 and _— _
k— o limits, respectively. All the above conditions can also v- V-

be derived in the case whexg<a or whenx, lies between

two barriers. The s-dependent eigenvalueg andq, of M are
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ql] _ Lot it wi—vo)s] i{ [v,f_—v_f,+(v,—v_)s] 2+s(s+f++f,) 1/2, a5
dz 2v v_ 2v,v_ V4U_
|
and the corresponding eigenvectogsandu, are We see that whew>0 and such tha¥/>D/x,, most of
MTs grow indefinitely regardeless their initial state, that is,
1 f_ the characteristic of the unbounded regime mentioned above.
Uy,2= 19 Cl,zzm- (3-8 In general, for an arbitrary value ¥f, the survival probabili-

ties start from one at=0 and decrease to a certain finite

It follows that the general solution of EB.3) is therefore ~ Vvalue as—o. One may then define the “relaxation times,”
denoted byr. (X,), thatS. (t|xo) relaxes towards. (o|xo):

1
Be%2%o , ©
e (CZ) Ti(XO):f
3.7) °

whereA and B are unknown constants. Since probabilitiesin which we have use®. (0|xg)=1. WhenS. (»|x,)=0,
§+(S|xo) might be bounded ag—, this requires us to i.e., when the escape probabilities are identically equal to

haveA=0. The remaining constar is obtained in using 270 7=(Xo) reduce the time areas und8t (t|xo). These
the boundary condition in E43.2). We find are, by definition, the mean first passage times=+d® for a

MT initially at xo and in statet+ or —. On the other hand,
when the escape probabilities are nonzetro(x,) represent
,  (3.88 the time areas betweed. (t|xy) and the line - S.(|xg).
In this caser. (xg) denote the mean first passage times con-
ditional that a MT, initially atx, and in state+ or —, has
é—(S|X)= E[l_eqzxo]_ (3.8b reached the absorbing boundaryxat0. In each case, the
S first passage time distributions, denotedfy(t|x,), can be

. _ _ ~__ related to the corresponding survival probabilities as
It may be interesting, as a check, to consider the two limiting

cases. Wherfi_=0, i.e., once the MT is in state, it stays 1 dS. (t|xo)
there until it disappears at the nucleating site. In this case F.(t|xg)=— 1-5. (| 7dt
both the survival probabilities are equal to oBe(t|x) =1, = (1Xo)
up to the timet=xy/v _, after which they are zero. Con-
versely, forf , =0, i.e., once the MT starts in state it stays
there forever so thatS, (t|x)=1 for all times and
S_(t|xg)=1—H(t—xo/v_)e -1

Let us return to the survival probabilities and note
that g, can be expressed in term of steady-state velocity
V [cf. Eqg. (2.7)], the difference of velocitiesAv, and
the diffusion coefficientD as Qy(s)=—[wV+Avs+
V(wV+Avs)?+4wDs(s+ w)]/2wD. Thus, depending on Here we havee..(Xq) =S. (*|Xo) =0. Substituting Egs.
the sign of V, we have q,(0)=0 for V=<0 and (3.8a and(3.8b into Eq.(3.1]) yields
g,(0)=—-V/D for V>0. It follows that ast—x, the sur-

1

+ AerXo
1

s S (t[xg) = S+ (0| x0)

1—S.([xo)

(é+<s|xo>) 1
S_(sxo)

Cq dt, (3.10

~ 1 S+f_+l)_q2
Si(sx0) = R e a—

) e¥2%o

or

(3.11

1-5S.(s|xo)

|A:¢(S|Xo)=m-

A. Bounded regimeV<0

vival probabilities decrease to zero whér=0 and to a finite E . (slxg)= s+f_ +U—Q2) 2% (3.123
value less than one fof>0, meaning that in the latter situ- 70 f_ ' '
ation once the MT has been nucleated it never shrinks back

to the nucleating site. This allows us to define the escape £ (s]xo) = 2% (3.125

probabilities that a MT starting out fromy, never reaches the

nucleating site ag. (Xg) =S (%°|Xg). Multiplying by s Egs. . L

(3.89 an3(3.8b) ar_ug t?a)king_rse)'(t %6_)0 ﬁ%it gwg/ﬁndq Using next the relation in EA9), and after some calcula-
' tions, we finally end up with expressions

0, V=0 .
B 2f f_ e*(Z++Z_)/2
exo)=1 (vt Vo (399 F_(x :H(t_ﬁ :
L R A B R
v v ZO 1/2
= +| “—
0, 0 X[X0|0(\/Z(3_Zg)+f— _O> Il(\/z‘iz‘i)],
(3.9h T\ 2y

€-(x0)= 1—ex;{ _ V%

(3.133
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Xo\| _ Xg | 2f . f Xo
F_ =6\ t— —|e K[ t— —
(t|xg)=4|t e H|t U_)v++v_ o
x e~ @+ (V2 20), (3.13b

where we have defined the dimensionless variables

2f _

Z+:v++v_(v+t+X0), (3143
2f

0 _ + _

z_ v++v,(v_t Xg)- (3.14h

Equationg3.133 and(3.13h represent the generalization of
expressions previously derived in R¢8]. Note that as a
direct reading of the boundary condition in E3.2),
F_(t|0)=&(t) while F_(t|0)# &(t), meaning that the mean
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riving Egs.(3.173 and (3.17H with respect tos and taking
thes— 0 limit, we obtain the expressions for the conditional
mean first passage times as

1 Av vytu_
7. (Xg) = V+E Xo+ PRVARE (3.183
1 Av
T,(XO)Z v‘l‘w—D Xp- (318[:)

Except for the additional termv/wD in these formulas, we
see that both the ordinary and conditional mean first passage
times are identical. Depending on the signAaf, it is pos-
sible for|V| fixed to find a set of parametews. andf.. such

that the conditional mean first passage times in the un-
bounded regime\(>0) are smaller or greater than the mean
first passage times in the bounded reginde=Q); the equal-

first passage time or the lifetime of a MT starting at theity in both regimes holding foAv =0, i.e.,v ,=v _.

nucleating site with an outgoing velocity is nonzero.

As above, the overall mean relaxation time is obtained in

The mean first passage times can be obtained from thaveraging these times over the equilibrium velocity distribu-

relation in Eqg.(3.10 as ri(x0)=§i(0|x0). By taking the
s—0 limit in Egs. (3.89 and (3.88 we end up with the
expressions

X vytu_
Ti(Xo)=— T Ty (3.153
Xo
T,(Xo) = - v (315b

Similar expressions were previously derived by Ruf@h

tion. We get

(vytov)f_

7(Xo) = sy (319

1 Av
v eD/%"

w

IV. REDUCED GREEN’'S FUNCTIONS AND MOMENTS

In practice one is often interested in following a MT pre-
pared in the state where the initial velocity is chosen from
the equilibrium velocity distribution, that is to say, that at
t=0 the MT is in the state- with the probabilityg , () and

using a clever but complicated derivation based on the disn the state— with the probabilityg_(=). The reduced
crete two-phase model of dynamic instability proposed byGreen’s function is then defined as
Hill [3]. These times decrease when the velocity gets larger

and diverge a¥V=0. Note thatr,(0)— 1/f, asv_— and

7,.(0)—0 asf,—. In averaging next these lifetimes over
the initial equilibrium velocity, we obtain the overall mean

lifetime 7(xg) to x=0 as

7(Xg) =9-(%) 7_(Xo) + g+ () 74.(Xp)

Xo

(U++U_)f_

ey (3.1

B. Unbounded regimeV>0

Since nowe. (Xg) =S (|X) #0, direct application of
the relation in Eq(3.11) straightforwardly leads to

. vi(s+f_+v_qy) \%
F.(s|x0)= - o 2 eXF’[ D a2 Xo],
-+
(3.173
~ Vv
F_(s|x0)=exp{ 5+q2 xo]. (3.170

The time-dependenE _(t|x,) and F_(t|x,) are then ob-
tained by multiplying Egs. (3.133 and (3.13h by
(v+f_lv_T)expWVx /D) and exp{/x,/D), respectively. As
above, we still havé _(t|0)= 8(t) andF , (t|0)# &(t). De-

Pi(X,t|Xo):; 9; ()T (X,[%o), 4.7

whereP;(x,t|x,) denotes now the probability density that a
MT initially of length x, will be found in phase with length

x at the timet later. Denoting next byP(x,t|xg)=

P (X,t|xo) + P_(X,t|Xo) the probability density that at time
t the MT free end is found at given that it was initially at
Xo, We have

f_
P(X,t|XO)= Z[H++(X,I|X0)+H_+(X,'[|X0)]

f.
+ Z[H+,(x,t|xo)+H,,(x,t|x0)].
(4.2

P(x,t|x,) satisfies the same telegrapher’s equation hat
andll;; do, i.e., Eq.(2.8), but with the initial conditions

P(x,t=0|xg) = 8(X—Xo), (4.33
JP B J b
E _ ——V&(S(X—XO). (4.3b

0
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We may investigate the possibility of an equilibrium distri- ) ) 1
bution that we denote bp.(x). Eliminating all time deriva- (Ax=(t))=my(t) —[mMy(t)]=2D g t— E(l—e_wt)

tives of P in Eq. (2.9) yields (4.93
9’P aP
D—--V—==0. (4.4 wDgpd?  for wt<1
X X = (4.9
2Dgpd  for ot>1,

To emphasize the one-to-one relation betweemd the MT

length, we can, without loss of generality, restucto take i which we have introduced the apparent diffusion coeffi-
only positive values. This differential equation is easily cjent defined by
solved with the conditions that the equilibrium distribution is

bounded, i.e., lim..P¢(x) =0, and the probability density

. . % _ . . . V2
is conserved, i.efyP¢(x)dx=1, or equivalently, in using D. —D— —
the reflecting boundary condition in E@.35 for a=0. One app ®
finds that in the unlimited regim@.e., V=0) the equilibrium

distribution does not exist, while in the bounded regifne., This expression of AX3(t)) is very similar to the one we

V<0) the steady-state length distribution is an exponentlagbtam for the classical Brownian motion. For small time

fof (v.+v_ )2
:#, .10

w

given by: scales compared to the velocity relaxation tinae ®,
Pedx) =11, (4539  (AX*(t))~t? which is characteristic of deterministic motion
or a wave propagation process, and for large time scale,
D Vv (AX2(t))~t, which is characteristic of Brownian diffusion
=== T (4.5D  process with the diffusion coefficieflt,,,. The latter is the
fi—v, f_

diffusion coefficient we will determine from the standard de-
wherel is the average MT length that diverges at the threshviation based experiments. Due to the difference both in
old V=0, i.e., wherv _f,=v.f_. speedsw_ andv, and in frequencie$_ andf., the MT
The statistics of the MT dynamics can also be characterfé€ end appears to diffuse with a smaller diffusion coeffi-
ized from the various moments &f in particular their de-  Cient Dap=D. This apparent diffusion coefficient, previ-

pendence on timé. The moments are defined as ously obtained by Dogterom and LeiblE2] as being the
effective diffusion coefficient, reduces  at the threshold

o V=0 or in the diffusion limitw— . All of this suggests the
my(t) = fﬁw(x—xo)”P(x,t|xo)dx (4.6 possibility to approximate the dynamic instabilitgr tele-
graph process by a simple diffusion process. It worthwhile
plus the relations to note, however, that the difference betwedanand Dy,

indicates that taking the—oo limit (as in the usual telegraph

o ,IP process in dynamic instability expressions does not lead to
(X Xg)" == dx=—nmy_4(1), (478 the correct diffusion limit.
* PP V. DIFFUSION LIMIT OF THE DYNAMIC INSTABILITY
f_ (x—xo)”ﬁdx=n(n—l)mn_l(t). (4.7b

In order to gain more insight into the diffusion limit of the
ynamic instability process, we focus again on the probabil-
ty P(x,t)=P, (x,t)+P_(x,t) that the MT free end is at
at timet and we consider in addition the probability flux,
J(x,t)=v P, (x,t)—v_P_(x,t). From Eqg.(2.18 one can

All moments can be obtained from the Laplace transform o
Eq. (2.8 by multiplying by (x—xg)" and integrating ovex
from —oo to . We get forn=0 andn=1:

A 1 show that
Mg(s)= g‘:’mo(t): 1, (4.89
JP N dJ 0 51
) V E 5_ ] ( . a
my(s)= —Z@ml(t)=Vt, (4.8b
s
0J P
and forn=2 the moments are given by the recurrence o TAv -+ wl=—wD— +wVP. (5.1b

. sAv+wV . ) -
My(s) = m”mn—l(SH mn(n—l)mn_z(s) In combining together these equations, one can easily show

(4.80 that bothP(x,t) and J(x,t) satisfy the same telegrapher’'s
equation in Eq(2.8). Equation(5.1a expresses the conser-
From an experimental standpoint, the most accessible quamation of the total probability density and E¢5.1b de-
tity for any random walk process is the mean-square disscribes the evolution of the probability flux. The integrated
placement form of Eqg. (5.1b can be written as
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) t — — 2
J(x,t)=e—th(x—Avt,0)+J dx’J dt’ p(x,t|xo):;{ex,{_w}
—» 0 (47TDt)1/2 4Dt
X S[x—x'—Av(t—t')]we @t-t) VXo (X+Xo— V1)?
+exp — o~ |eX) - —— 57—
JP L
X —DJ‘FVP(X A9 . (5.2 Vv Vx 3tV
0
— —exg —|erfd ———|, 5.7)
2D %D C[ V4Dt (

Using the fact thae™ “("t)— §(t—t') asw—, it is easy
show that ) . )
where erf€ ] is the complementary error function. Letting

, 2 , , t—o, we find that for V=0, P(x,t|xg)—0 as t—o,
lim J(x,t)= J,wdx JO dt’s(t—t")6(x—x") whereas folV<0, P(X,t—|Xg) = Pe{x), where the equi-
o librium distribution Pe((x) is given by Eq.(4.53.

X

IP
—D—+VP(x',t')

JX B. The catastrophe time distribution

s Another interesting quantity to determine is the density
=—D—+VP(x,t), (5.3 distribution of catastrophe time, i.e., the time at which a MT
X initially of length x=x, disappears for the first time in reach-
ing the nucleating site at=0. The mean catastrophe time is
something like the mean lifetime of a MT or the mean first
passage time ta=0 as discussed earlier in Sec. Il In this
respect, the catastrophe time distribution is identical to the
first passage time distribution. Here we derive similar ex-
pressions for the survival probability, the first passage time
distribution, and the mean first passage time in the diffusion
el el (5.4) limit. Thus S(t|xo) denotes the survival probability that a
ot ax? 28 MT initially of length x=Xx, is still in the system at timein
the presence of the absorbing nucleating sitex=ad. The
It is worthwhile to emphasize that the dynamic instabilily ~ catastrophe time distributioR(t|x,) is, for V<0, the first
the telegraph procepsss a velocity jump process in which passage time distribution ts=0 for an original MT of
the MT free end moves in a deterministic motion with alengthx=x, and, forv>0, it is the conditional first passage
velocity randomly switching between two values accordingtime distribution that a MT starting out at has reached the
to a Poisson process, whereas its approximating diffusiosrigin x=0. Both S(t|x,) and F(t|x,) are related by the
process is a position jump process in which the MT stochassame relations in E¢3.11) (without the index=*). In order
tically moves from one position to another with the densitytg determineS(t|x,) we have to solve first Eq5.4) with the
distribution ¢(t) for pausing time between jumps also gov- initial condition P(x,t=0|xg)= 8(x—x,) and subjected to
ermed by a Poisson process, i¢(f) =we™ “'. Equivalently, the absorbing boundary condition &0, that is to say,
Eq. (5.4) describes the evolution of the state variak(g) P(x,t|Xo) =0 for x or xo=0 (here the forward and adjoint
obeying the dynamical equation boundary conditions are the samw/ith these conditions the
solution of Eq.(5.4) is given by

which gives Fick’s first law in the presence of a drift. This
limit is the exact analog of the overdamped limit of the con-
ventional Brownian motion. Combining Eq%.19 and(5.3)
leads to the diffusion equatiofalso known as the Wiener
process

P PP 9P

dx

AR 59 el L [ F{ (X=X~ Vt)?
where{(t) is the Gaussian stochastic velocity of mean zero (4mD1)
and varianc€ Z(t)£(t')y=2D5(t—t’'). VXo (X+Xo— V1)2

A. Restricted Green’s function

5.8
The differential equation5.4) is easier to use than Eq. ©.8

(2.8) and it can be solved explicitly. One of the interesting _ o ) ) _
situation for MTs corresponds to the case wherés re- The survival probability is therefore obtained by integrating
stricted to the subspace=0 by imposing the reflecting Ed- (5.8 overx from 0 to as

boundary condition ax=0, i.e.,

9P S(t|%o) fOOP( t|xo)d ! fc[_xo_Vt
el - Xo) = X,t[xo)dx= serfd ————
D X VP) . 0. (5.6 0 2 \/ﬁ
Thus, with the initial conditioP(x,t=0]xe) = 5(X— Xo), the _Eexp[ V% erf{ Xo— VtI. 5.9
solution of Eq.(5.4) is given by[10] 2 D V4Dt
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As discussed above, we may consider the escape probabilifyhis manifestly shows that the time area un8gtx,) in the

that is obtained by taking the— limit in Eq. (5.9. We  the regimeV<0 (i.e., the mean first passage time to the

find nucleating sitg is exactly identical to the time area com-
prised betweers(t|xo) and the line + S(e|xq) for V>0

0, V=0 (i.e., the conditional mean first passage time to the nucleating
_ site). Notice thatry(xg) corresponds to the diffusion limit,

€(Xo) 1—exp{ - m] V>0. (.19 i.e., o—o0, of the mean lifetimes(x,) given in Eqs.(3.16

D and(3.19. It may be instructive to remark that the functional

L form of F(t|x,) is also found in other dynamical systems, for
This indicates that fo/>0 catastrophe events are so rarégyample, for the distribution of laminar phase duration in the

that a MT has a certain probability of persisting in the systemy_qsf intermittency[11] and for the distribution of the size

without touching the nucleating site, while fov<0, o the avalanche in the self-organized criticali2].

€(Xo) =0, showing that a MT will surely collapse t0=0. In some instances, the dynamic instability of MTs can be
Using next Eq(5.9) in the time derivative relation in EQ. geen a5 an example of the on-off intermittency if we identify

(3.1D, we get the catastrophe time distribution as the laminar phases to the elapsed times during which a MT

has not yet touched the nucleating site. Note also that during

the “MT laminar phases” the MT undergoes stochastic mo-

Xo F{— (Xo—V1)?

F(t[xo)= (477Dt3)1’zex 4Dt tion (governed by the telegraph procetige the on-off in-
termittency observablévhich can undergo chaotic motipn
1, V=0 does.
The term self-organized criticality was propoddd] to
X VX (5.11 . . .
Xp —1i, V>0, refer to a generic state of driven systems that, evolving to-
D wards that state, may respond to a minor solicitation by a

. ] hierarchy of chain reactions that can propagate to an arbi-
where the additional exponential term fdr>-0 take care of 41y supset of the system throughout the entire system. Such
the normalization to one dF(t|xo). This expression repre- 5 concept can manifestly be used to characterize the dynam-
sents the diffusion limit of Eq¢3.139 and(3.130 for V<0 jcs of a MT, which, for any original length, can abruptly
and their analogous fov>0. For a timet fixed, F(t|Xo)  shrink to zero due to a catastrophe event or escape from zero
follows a shifted Wigner distributioriexcept for the addi-  thanks to a rescue event. Moreover, the connection between
tional exponential term fov>0) as a function of initial MT  the dynamic instability of MTs and the self-organized criti-
Iength. At the transition threShOM:O, F(tho) scales with Ca||ty is Supported by the poss|b|||ty of mapp|ng the ava-

time as a power lawk (t|xo)~t =2 for largert, so that the  Janche propagation onto a random walk or a diffusion pro-
catastrophe time distribution has no finite moments. Wheness.

the diffusion is biased, i.eV#0, the distributionF (t|x)
has an exponential shoulder &t|xo)~t %% Y7, The VI, CONCLUDING REMARKS
power law breaks down at about 7., wherer; is the cut-

off time scale at which the drift term and the diffusive term
are comparable, namely,r.~ /D 7.. The precise expression br
of the cutoff timer,, obtained from Eq(5.11), is

Fractional Brownian motion was introduced by Mandel-
ot and Van Nesgl4] as a generalization to a conventional
Brownian motion so as to describe long-range correlated ran-
dom walks. A particle undergoing such a kind of motion has
4D a variance scaling with time likéAx?(t))~tH, whereH is
_?' (5.12 the Hurst exponenfl5] such that BCH<1. The essential

feature of the fractional Brownian motion is the manifesta-
As a consequence of the limitation to the power law, thetio,” of persistent and antipersistent trends in rarjdom walks
moments of the catastrophe time distribution are now finiteWith H>1/2 and H<1/2, respectively. By persistent we

For that purpose, it is convenient to work with the LaplaceM&an that an increasa decreasetrend in the past tends on
transformed expression &{(t|xo): the average to be followed by an incredaedecreasetrend

in the future, while the term antipersistent denotes the situa-

Tc

tion where an increase trend is followed by a decreasing one
. +JV2+ . .
S(s|xq) = E 1—exp{ — w) Xo] and vice versaH=1/2 corresponds to the ordinary Brown-
s 2D ian motion with independent steps of the walker.

(5.13 It is obvious from the foregoing analysis that MTs un-

. . L ) dergo persistent random walks. Indeed, a MT initially in the
By using this expression in E3.10, we find that the mean growing phase will persist in that phase, but once it begins

catastrophe timeequal to the mean first passage time to thegrinking, it will continue to shrink. One would then be
nucleating site for the regimé<0 or equal the conditional tempted to conclude that the dynamic instability of a MT is
mean first passage time t_o th_e nucle_ating site for the regimgimijar to a fractional Brownian motion witH > 1/2. Mean-
V>0), denoted byryg(xo), is simply given by while, this is not so since both the mean-square displacement
of the MT given in Eq.(4.9b and the catastrophe time dis-
r4(Xg) = ﬁ_ (5.14) tribution in Eq.(5.11) lead to a Hurst exponent éf=1/2 as
[V for an ordinary Brownian motion. The similarity between the
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dynamic instability and the fractional Brownian motion is
only qualitative. In fact, the persistent nature of the MT dy-
namics originates from its underlying persistent random walk
in which one is given the probabilities of moving either in
the same direction or in the reverse direction of the immediyy
ately preceding step. Such a process can be regarded as a
two-step correlated random walk. The persistence of MT
motions is also evidenced in the diffusion limit where the

MT dynamics is analogous to that of a particle diffusing ina I+ (X,S[xg)=

linear potential, namelyU(x) = —V|x| [see, for example,
Eqg. (5.5], whereV is the steady-state velocity of a MT.
Since in the absence of the diffusion the particle always
moves in such a way as to minimizé&(x), we clearly see
why an equilibrium distribution of MT lengths holds only
whenV<Q0, i.e., when the point=0 is attractive.

In the meantime we have to note that since velocity
switches are Poisson procesges first-order kinetics with
constant frequencies, a MT is equally likely to undergo ca-
tastrophe and rescue events at any time, regardless of halhere
long it has been growing or shrinking. The dynamic instabil-
ity discussed here is then Markovian. However, it is possible
that the MT dynamics exhibits memory effects. This may
occur, for example, when the catastrophe frequency becomes
a function of time depending on how long the MT has been
growing[16,17]. Such a behavior can be modeled by consid-
ering, for example, non-first-order kinetics for the velocity
transitions. It will be interesting to conduct similar studies as
done above for such non-Markovian dynamics.

On the other hand, the diffusion coefficiebt and the
steady-state velocity (therebyv, andv_ as well asf, and
f_) may become space dependent due to a special distrib
tion of free tubulins, hence making the problem nonlinear.
Here also, studying nonlinear effects on the dynamic insta-
bility is of a great interest to address the question of self-
organization of MTs. Finally, for practical concerns, the dif-
fusion approximation of the dynamic instability outlined
above can provide a possible framework for investigating the
non-Markovian and nonlinear dynamics of microtubules.
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APPENDIX A: INVERSION OF THE LAPLACE
TRANSFORM OF IT;;(x,5|Xo)

To illustrate how Laplace transformed Green'’s functions
IT;;(x,s|xo) are inverted we considefl, (x,s|xo) for
X< Xgp:

S+f__)\11)_

e)\l(X—XO),
@D(N1—1p)

I, . (x,5|X0)= X<Xg.
(A1)
In rewriting the eigenvalues; and\, as

vytu_
2v,0_

)\1 B wV+AvS+
)\2 - 2wD o

V(s+bi)(stb,), (A2)

b1] 3 v f_+v_fox2Jv v_f f_

b,

-1

++(X,8|%g) becomes

eV(x—xo)/ZD
s —(vitv_)e s
2v,(vytvo) (vetv-)
X e aNEThIsTh) L 1y f 4y _f))
g~ 2\(s¥by)(s+by) ]

V(s+by)(s+by)

(A4)

+(v,y+v_)sle¥s

(Xo=X), (A5)

—(Xg—X). (AB)

Next denoting byp(t)=£"1[p(s)] the inverse Laplace
{ransform, we have

L7 e Y ]=4(t-y), (A7)

L Yse Vs]=— i,/y‘*l[eﬂ’ﬂ: - iB(t—y), (A8)
ay ay

e—a\(s+ b1)(s+by)

V(s+by)(s+by)

— H(t _ a)ef(bfr bz)t/ZI 0(

t2_a2

b, —by
2

(A9)

—1[e—a‘/(s+ by)(s+ bz)]

J —a\/(s+by)(s+by)
— -1

~ Jda

e

V(s+by)(s+by)

a(b;—by)

=8(t—a)e (P1Tba24 3yt —q)
( ( 2\t?—a?

b,—b
x g~ (b1bo)t/2) 1(% t2— a2

. (A10)

with wherely( ) andl4( ) are the modified Bessel functions of
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order zero and one, respectively, and the formula in(EQ)

is obtained from Ref[18]. Using Eqs.(A7)—(A10), one ob-

tainsII, , (X,t|xo) for x<x, as
IT, . (X,t|xo)
= H(t—y)H(t—y—a)e~ (b1b)(t=¥)2gV(x=x0)/2D

1/2 bl_b2 . .
| ——V(t-y)"-a”/.

b,—b,[t-y—a
ZU+ \‘t_y‘ka

(Al11)

After some rearrangements, we find

- _ +X_X0) fo (z_\¥?
(X tx)="H| t v Juito. Z

xeZ+F2)2) ((z,7.), (A12)

wherez_ andz, are defined in Sec. Il. All Green'’s functions
IT;; (x,t|xo) are determined in this way.
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